$解:設(shè)正方形的邊長為?2a,?易得?ED=a,??CE=\sqrt{5}a?$
$過點?H?作?MN//AD,?分別交?AB,??CD?于點?M,??N?$
$則?△CNH∽△CDE?$
$∴?\frac {NH}{ED}=\frac {CH}{CE}?$
$∵?CH= 2a,??ED=a,??CE=\sqrt{5}a?$
$∴?NH=\frac {2\sqrt{5}}{5}a?$
$∴?MH= 2a-\frac {2\sqrt{5}}{5}a?$
$由上述可得,?∠HMG =∠CNH=∠CHG= 90°?$
$得?∠MHG=∠NCH,??△HMG∽△CNH?$
$∴?△HMG∽△CDE?$
$∴?\frac {HG}{EC}=\frac {MH}{CD}?$
$則?HG=\frac {\sqrt{5}}{2}(2a-\frac {2\sqrt{5}}{5}a)=(\sqrt{5}-1)a?$
$∴?BG= HG=\frac {\sqrt{5}-1}{2}AB?$
$∴點?G ?為?AB?的黃金分割點$