$解:?(3)?設(shè)小迪用于回顧反思的時間為?x {\mathrm {\ \mathrm {min}}}(0≤x≤10)?$
$則用于解題的時間為?(20-x)\mathrm {\ \mathrm {min}},?學(xué)習(xí)收益為?y?$
$當(dāng)?0≤x\lt 4?時,?y= -x2+ 8x+ 2(20-x)=-x2+ 6x+40=-(x-3)2+49?$
$∴當(dāng)?x=3?時,?y?取最大值為?49?$
$當(dāng)?4≤x≤10?時,?y= 16+ 2(20-x)= 56 - 2x,??y?隨?x?的增大而減小$
$∴當(dāng)?x=4?時,?y?取最大值為?48?$
$綜上所述:當(dāng)?x=3?時,?y?取最大值$
$答:小迪應(yīng)該解題?17 \mathrm {\ \mathrm {min}},?回顧反思?3 \mathrm {\ \mathrm {min}},?此時的學(xué)習(xí)收益總量最大。$