$證明:(1)∵DE⊥BC,∴∠DFB=90°$
$∵∠ACB=90°,∴∠ACB=∠DFB, ∴AC//DE$
$∵MN//AB,即CE//AD$
$∴四邊形ADEC是平行四邊形,∴CE=AD$
$(2)四邊形BECD是菱形,理由:∵D為AB中點,∴AD=BD$
$∵CE=AD,∴BD=CE$
$∵BD//CE,∴四邊形BECD是平行四邊形$
$∵DE⊥BC,∴四邊形BECD是菱形$
$(3)當(dāng)∠A=45°時,四邊形BECD是正方形,理由:$
$當(dāng)∠A=45°時, ∵∠ACB=90°,∴∠ABC=45°$
$由(2)可知,四邊形BECD是菱形,∴∠ABC=∠CBE=45°$
$∴∠DBE=90°,∴四邊形BECD是正方形$