$解:(1)∵拋物線y=-x2+bx(b為常數)的頂點的橫坐標為-\frac{2×(-1)}=\frac{2},$
$拋物線y=-x2+2x的頂點的橫坐標為-\frac{2}{2×(-1)}=1,$
$∴\frac{2}=1+1,$
$解得b=4$
$(2)∵點A(x_{1},y_{1})在拋物線y=-x2+2x上,點B(x_{1}+t,y_{1}+h)在拋物線y=-x2+4x上,$
$∴y_{1}=-x_{1}2+2x_{1},y_{1}+h=-(x_{1}+t)2+4(x_{1}+t).$
$∴-x_12+2x_{1}+h=-(x_12+t)2+4(x_{1}+t).整理,得h=-t2-2x_{1}t+2x_{1}+4t\ $
$①∵h=3t,$
$∴3t=-t2-2x_{1}t+2x_{1}+4t,即t(t+2x_{1})=t+2x_{1},$
$∵x_{1}≥0,t>0,∴t+2x_{1}>0.$
$∴t=1.$
$∴h=3\ $
$②將x_{1}=t-1代入h=-t2-2x_{1}t+2x_{1}+4t,得h=-t2-2t(t-1)+2(t-1)+4t,$
$即h=-3t2+8t-2=-3(2-\frac{4}{3})2+\frac{10}{3}$
$∵-3<0,$
$∴當t=\frac{4}{3},即x_{1}=\frac{1}{3}時,h取最大值,為\frac{10}{3}$