$解:(1)在Rt△ABC中,$
$∵∠ACB=90°,AC=8,BC=6,$
$∴由勾股定理,得AB= \sqrt{82+62}=10.$
$∵ CD⊥AB,$
$∴∠CDB=∠CDA=90°,S_{△ABC}=\frac{1}{2}×BC×AC=\frac{1}{2}×AB×CD.$
$∴CD=\frac{BC×AC}{AB}=\frac{6×8}{10}=4.8.$
$∴線段CD的長為4.8$
$(2)過點P作PH⊥AC,垂足為H.$
$根據題意,得DP=t,CQ=t,則CP=4.8-t.\ $
$∵∠ACB=∠CDB=90°,$
$∴∠HCP+∠BCD=∠B+∠BCD=90°$
$∴ ∠HCP=∠B.\ $
$∵ PH⊥AC,$
$∴∠CHP=90°$
$∴∠CHP=∠BCA.$
$∴△CHP∽△BCA.\ $
$∴\frac{PH}{AC}=\frac{PC}{AB},即\frac{PH}{8}=\frac{4.8-t}{10}\ $
$∴PH=\frac{96}{25}-\frac{4}{5}t.$
$∴S_{△CPQ}=\frac{1}{2}×CQ×PH=\frac{1}{2}t(\frac{96}{25}-\frac{4}{5}t)=-\frac{2}{5}t2+\frac{48}{25}t\ $
$存在\ $
$∵S_{△ABC}=\frac{1}{2}×6×8=24,且S_{△CPQ} : S_{△ABC}=9:100,$
$∴ (-\frac{2}{5}t2+\frac{48}{25}t) :24=9:100.整理,得(5t-9)(t-3)=0,解得t_{1}=\frac{9}{5},t_{2}=3.$
$由題意,得0≤t≤4.8,$
$∴當t的值為\frac{9}{5}或3時,S_{△CPQ}:S_{△ABC}=9:100(更多請點擊查看作業(yè)精靈詳解)$