$解:(1)∵拋物線C_{1}對(duì)應(yīng)的函數(shù)表達(dá)式為y=a(x-3)2+2,$
$∴C_{1}的最高點(diǎn)坐標(biāo)為(3,2).$
$∵點(diǎn)A(6,1)在拋物線C_{1}:y=a(x-3)2+2上,$
$∴ 1=a×(6-3)2+2,解得a=-\frac{1}{9}$
$∴拋物線C_{1}對(duì)應(yīng)的函數(shù)表達(dá)式為y=-\frac{1}{9}(x-3)2+2.$
$當(dāng)x=0時(shí),y=-\frac{1}{9}×(-3)2+2=1,即c=1$
$(2)∵嘉嘉在x軸上方1m的高度上,且到點(diǎn)A(6,1)的水平距離不超過(guò)1m的范圍內(nèi)可以接到沙包,$
$此時(shí)嘉嘉所處的位置在點(diǎn)A'處,$
$∴點(diǎn)A'的坐標(biāo)范圍在點(diǎn)(5,1)與點(diǎn)(7,1)之間.$
$當(dāng)拋物線C_{2}:y=-\frac{1}{8}x2+\frac{n}{8}x+1+1經(jīng)過(guò)點(diǎn)(5,1)時(shí),1=-\frac{1}{8}×52+\frac{n}{8}×5+1+1,解得n=\frac{17}{5};$
$當(dāng)經(jīng)過(guò)點(diǎn)(7,1)時(shí),1=-\frac{1}{8}×72+\frac{n}{8}×7+1+1,解得n=\frac{41}{7}$
$∴\frac{17}{5}≤n≤\frac{41}{7}$
$∴符合條件的n的整數(shù)值為4和5$