$解:(3)∵AB為⊙O的直徑$
$∴∠ACB=∠ADB=∠ADP=90°$
$∴在△ADG中,∠AGB+∠GAD=90°.$
$由(2),得∠GAD+∠BAD=90°,$
$∴∠AGB= ∠BAD.$
$由sin∠APD=\frac{AD}{AP}=\frac{1}{3},$
$設(shè)AD=a,則AP=3a,$
$∴由勾股定理,得PD= \sqrt{AP2-AD2}=2\sqrt{2}a.$
$∴tan∠APD=\frac{AD}{PD}= \frac{a}{2\sqrt{2}a}=\frac{\sqrt{2}}{4}$
$由翻折,可得AC=AD=a,BD=BC,$
$∴ PC=PA+AC=3a+a=4a.$
$∵在Rt△PCB中,tan∠CPB=\frac{CB}{PC}=\frac{\sqrt{2}}{4},$
$∴BD=BC=\frac{\sqrt{2}}{4}PC=\sqrt{2}a.$
$∴tan∠AGB=tan∠DAB=\frac{BD}{AD}=\frac{\sqrt{2}a}{a}=\sqrt{2}$