$解:\left(2\right)如圖1,過D作DG\bot x軸于G,交BC于H,$
$當(dāng)x=0時(shí),y=-6,$
$\therefore C\left(0,-6\right),$
$設(shè)BC的解析式為:y=kx+n,$
$則\left\{\begin{array}{l}{n=-6}\\{4k+n=0}\end{array}\right.,解得:\left\{\begin{array}{l}{k=\frac{3}{2}}\\{n=-6}\end{array}\right.,$
$\therefore BC的解析式為:y=\frac{3}{2}x-6,$
$設(shè)D\left(x,\frac{3}{4}{x}^{2}-\frac{3}{2}x-6\right),則H\left(x,\frac{3}{2}x-6\right),$
$\therefore DH=\frac{3}{2}x-6-\left(\frac{3}{4}{x}^{2}-\frac{3}{2}x-6\right)$
$=-\frac{3}{4}{x}^{2}+3x,$
$\because \triangle BCD的面積是\frac{9}{2},$
$\therefore \frac{1}{2}DH\cdot OB=\frac{9}{2},$
$\therefore \frac{1}{2}\times 4\times \left(-\frac{3}{4}{x}^{2}+3x\right)=\frac{9}{2},$
$解得:x=1或3,$
$\because 點(diǎn)D在直線l右側(cè)的拋物線上,$
$\therefore D\left(3,-\frac{15}{4}\right),$
$\therefore \triangle ABD的面積=\frac{1}{2}AB\cdot DG=\frac{1}{2}\times 6\times \frac{15}{4}=\frac{45}{4}$