$解:∵拋物線y=ax2+bx+3經(jīng)過點(diǎn)(-m,0)、(3m,0),$
$∴對(duì)稱軸為直線x=m,即-\frac{2a}=m。$
$∴b=-2am.$
$把(-m,0)、(3m,0)代入y=ax2+bx+3,得\begin{cases}{am2-bm+3=0①,\ }\\{9am2+3bm+3=0②,}\end{cases}$
$由①× 3+②,得12am2+12=0.$
$化簡,得am2+1=0.$
$∴b2+4a=(-2am)2+4a=4a2m2+4a=4a(am2+1)=4a×0=0$