?$解:(1)∵AD⊥BC,AB=10,AD=6,$?
?$∴ 由勾股定理,得 BD= \sqrt{AB2-AD2}=\sqrt{102-62}=8.$?
?$∵ 在 Rt△ADC 中,tan∠ACB=\frac{AD}{CD},tan∠ACB=1,$?
?$∴ CD=AD=6.$?
?$∴ BC=BD+CD=8+6=14$?
?$(2)∵AE是邊BC上的中線,$?
?$∴CE=\frac{1}{2}BC=7.$?
?$∴DE=CE-CD=7-6=1.$?
?$∵AD⊥BC,$?
?$∴由勾股定理,得 AE=\sqrt{AD2+DE2}= \sqrt{62+12}= \sqrt{37}$?
?$∴ 在Rt△ADE中,sin∠DAE=\frac{DE}{AE}=\frac{1}{\sqrt{37}}=\frac{\sqrt{37}}{37}$?