$解:(1)把C(0,-3)代入y=(x-1)2+k,得k=-4,$
$∴此拋 物線對(duì)應(yīng)的函數(shù)表達(dá)式為y=(x-1)2-4,即y=x2-2x-3$
$(2)在y=x2-2x-3中,令y=0,則x=-1或x=3.$
$∴易得 A(-1,0)、B(3,0).$
$∴AB=4.$
$∵P為拋物線上一點(diǎn),橫坐標(biāo)為m,m>0,點(diǎn)P位于x軸的下方,$
$∴點(diǎn)P的坐標(biāo)為(m,m2-2m-3),0<m<3,$
$∴S_{△ABP}=\frac{1}{2}×AB×(-y_p)=\frac{1}{2}×4×[-(m2-2m-3)]=-2m2+4m+6=-2(m-1)2+8,0<m<3.$
$∵-2<0,$
$∴當(dāng)m=1時(shí),S_{△ABP}取得最大值,最大值為8$
$(3)由y=(x-1)2-4,得拋物線的頂點(diǎn)坐標(biāo)為(1,-4).$
$①當(dāng)0<m≤1時(shí),h=-3-(m2-2m-3)=-m2+2m;$
$當(dāng)1<m≤2時(shí),h=-3-(-4)=1;$
$當(dāng)m>2時(shí),h=m2-2m-3-(-4)=m2-2m+1.$