解:?$MN=\frac {a}2\ \mathrm {cm} $?不變,理由如下:
當(dāng)?$C$?在?$AB$?上時(shí);?$(2)$?中已證得
當(dāng)?$C$?在?$AB$?延長(zhǎng)線上時(shí),?$AC=AB+BC$?
∵?$M$?、?$N$?分別是?$AB$?、?$AC$?中點(diǎn)
∴?$MN=AN-AM=\frac 12(AC-AB)$?
?$=\frac 12BC=\frac {a}2\ \mathrm {cm}$?
當(dāng)?$C$?在?$BA$?延長(zhǎng)線上時(shí),?$BC=BA+AC$?
∵?$M$?、?$N$?分別是?$AB$?、?$AC$?中點(diǎn)
∴?$MN=AM+AN=\frac 12(AB+AC)$?
?$=\frac 12BC=\frac {a}2\ \mathrm {cm}$?
綜上所述,?$MN=\frac {a}2\ \mathrm {cm} $?不變