$證明:∵D是BC中點(diǎn),∴BD=CD$
$∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°$
$在Rt△BED和Rt△CFD中$
${{\begin{cases} {{BD=CD}} \\ {BE=CF} \end{cases}}}$
$∴Rt△BED≌Rt△CFD(HL),∴DE=DF$
$在Rt△AED和Rt△AFD中$
${{\begin{cases} {{AD=AD}} \\ {DE=DF} \end{cases}}}$
$∴Rt△AED≌Rt△AFD(HL),∴∠EAD=∠FAD$
$即AD平分∠BAC$