解:??$(1) $??設(shè)??$ y=k(x-3)$??,
把??$ x=4$??,??$y=3 $??代入得??$ k=3$??,
∴??$y $??與??$ x $??的函數(shù)表達(dá)式為??$ y=3(x-3)$??,即??$ y=3 x-9$??
??$(2) $??設(shè)??$ y-1=k x$??,
把??$ x=2$??,??$y=-4 $??代入得??$ -4-1=2\ \mathrm {k}$??,解得??$ k=-\frac {5}{2}$??
∴??$y-1=-\frac {5}{2} x$??
∴??$y $??與??$ x $??的函數(shù)表達(dá)式為??$ y=-\frac {5}{2} x+1$??;
??$(3) $??設(shè)??$ y-{1}=a x$??,??$y-{2}=b(x-2)$??,則??$ y=a x+b(x-2)$??,
把??$ x=-1$??,??$y=2$??和??$x=2$??,??$y=5 $??代入得
??$\begin {cases}{-a-3\ \mathrm =2}\\{2a=5}\end {cases}$??,解得??$\begin {cases}{a=\frac {5}{2}}\\{b=-\frac {3}{2}}\end {cases}$??
∴??$y=\frac {5}{2} x-\frac {3}{2}(x-2)=x+3$??,
∴??$y $??與??$ x $??的函數(shù)表達(dá)式為??$ y=x+3.$??