$證明:∵圓O為△ABC的內(nèi)切圓$
$∴O是△ABC角平分線的交點(diǎn)$
$∴∠ABO=∠CBO,∠BAO=∠CAO$
$根據(jù)在同圓或等圓中,相等的圓周角所對(duì)的弧相等,$
$所對(duì)的弦相等,可得,弧AD=弧 CD$
$∴AD= CD∵CD所對(duì)的圓周角是∠CAD和∠CBD$
$∴∠CAD=∠CBO∴∠CAD=∠ABO$
$∴∠CAO+∠CAD=∠BAO+∠ABO$
$∴∠OAD=∠BAO+∠ABO$
$又∵∠AOD=∠BAO+∠ABO$
$∴∠OAD=∠AOD∴AD= OD∴AD= CD= OD$