$ 解:( 1 ) ∵BC=3\ \mathrm {cm},AC=4\ \mathrm {cm},∠C=90°.$
$ ∴AB=5\ \mathrm {cm}$
$ ∵E為AB中點(diǎn).$
$ ∴BE=\frac {1}{2}AB=\frac {5}{2}\ \mathrm {cm}.$
$ ∴AC\gt BC,BE<BC$
$ ∴點(diǎn)A在\odot B外,點(diǎn)C在\odot B上,點(diǎn)E在\odot B內(nèi).$
$ ( 2 ) ∵AB=5\ \mathrm {cm},AC=4\ \mathrm {cm},AE=\frac {3}{2}\ \mathrm {cm}$
$ ∴\odot A的半徑R應(yīng)滿足\frac {5}{2}\ \mathrm {cm}\lt R \lt 5\ \mathrm {cm}$