$解:(1) y=x+1$
$(2) (4,5)或(-5,-4)或(3,4)或(-4,-3)$
$(3)設(shè)點(diǎn)Q的坐標(biāo)為(a,2a-1),$
$點(diǎn)P的坐標(biāo)為(b,b+1),$
$∵PQ= \sqrt{2},$
$∴PQ2=2,即(a-b)2+(2a-b-2)2=2 ①,$
$又∵以點(diǎn)Q為圓心, \sqrt{2}為半徑的圓與直線{l}_1相切,$
$∴點(diǎn)Q到直線{l}_1:y=x+1的距離為 \sqrt{2},即 \frac {|a-(2a-1)+1|}{\sqrt{{1}^2+(-1)^2}}= \sqrt{2},$
$整理得:|2-a|=2,$
$解得:a=0或a=4,$
$將a=0代入①,得:b2+2b+1=0,$
$解得:b=-1,$
$∴點(diǎn)P的坐標(biāo)為(-1,0);$
$將a=4代入①,得:b2-10b+25=0,$
$解得:b=5,$
$∴點(diǎn)P的坐標(biāo)為(5,6),$
$綜上,點(diǎn)P的坐標(biāo)為(-1,0)或(5,6).$