$解:連接 A C 、 B C$
$\because O C \perp A B$
$\therefore \angle B O C=90^{\circ}$
$\therefore \angle B D C=\angle B A C=45^{\circ}$
$\because E C \perp C D,$
$\therefore \angle D C E=\angle A C B=90^{\circ},$
$\therefore \triangle D C F 和 \triangle A C B 都是等腰直角三角形$
$\therefore D C=F C, A C=B C$
$\because \angle D C A+\angle A C F=\angle B C F+\angle A C F=90^{\circ}$
$\therefore \angle D C A=\angle F C B$
$在 \triangle A C D 和 \triangle B C F 中$
${{\begin{cases}{{AC=BC}}\\{∠ACD=∠FCB}\\{CD=CF}\end{cases}}}$
$\therefore \triangle A C D \cong \triangle B C F(SAS)$
$\therefore AD=B F$