$解:設(shè)四邊形ABCD中∠BAD=120°,則所$
$指對角線只能是AC$
$再設(shè)△ABC是等邊三角形,則△ACD是直角三 $
$角形$
$因為AC=2$
$所以 {S}_{△ABC}= \frac {1}{2}×2× \sqrt{3}= \sqrt{3}$
$由△ACD是直角三角形,如圖有兩種可能:$
$①AC是斜邊,則 ∠AC{D}_1=30°,則 A{D}_1=1$
$所以 C{D}_1= \sqrt{3}$
$所以 {S}_{△AC{D}_1}= \frac {1}{2}×1× \sqrt{3}= \frac {\sqrt{3}}{2}$
$所以 {S}_{ABC{D}_1}={S}_{△ABC}+{S}_{△AC{D}_1}= \sqrt{3}+ \frac{\sqrt{3}}{2}= \frac{3\sqrt{3}}{2}$
$②AC是直角邊$
$則 ∠{D}_2=30°$
$則 A{D}_2=4$
$所以 C{D}_2=2\sqrt{3}$
$所以 {S}_{△AC{D}_2}= \frac {1}{2}×2×2 \sqrt{3}=2 \sqrt{3}$
${S}_{ABC{D}_2}={S}_{△ABC}+{S}_{△AC{D}_2}= \sqrt{3}+2 \sqrt{3}= 3\sqrt{3}$
$綜上可知這個四邊形的面積為 \frac {3\sqrt{3}}{2}或 3\sqrt{3}$