$(2)解:當(dāng)x_{1}^{2}-x_{2}^{2}=0時,即$
$(x_{1}+x_{2})(x_{1}-x_{2})=0$
$∴x_{1}+x_{2}=0或x_{1}-x_{2}=0$
$當(dāng)x_{1}+x_{2}=0時,根據(jù)一元二次方程的根與系$
$數(shù)的關(guān)系,可得$
$x_{1}+x_{2}=-(2m-1)$
$∴-(2m-1)=0$
$∴m=\frac{1}{2}$
$又∵由(1),一元二次方程$
$x^{2}+(2m-1)x+m^{2}=0有兩個實數(shù)根時m的$
$取值范圍是m≤\frac{1}{4}$
$∴m=\frac{1}{2}不成立,故m無解$
$當(dāng)x_{1}-x_{2}=0時,x_{1}=x_{2}$
$方程有兩個相等的實數(shù)根$
$∴b^{2}-4ac=(2m-1)^{2}-4×1×m=-4m+1=0$
$∴m=\frac{1}{4}\ $
$綜上所述,當(dāng)x_{1}^{2}-x_{2}^{2}=0時m=\frac{1}{4}$