$解:結(jié)論:BD=CE+2AE,證明如下:$
$在EB上截取EF=EA,連接AF,如答圖②$
$由(2)知∠AEB=60°,∴△AEF是等邊三角形\ $
$∴AF=AE,∠FAE=60°$
$∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°\ $
$∴∠BAC-∠FAC=∠FAE-∠FAC,∴∠BAF=∠CAE\ $
$在△BAF和△CAE中$
$\begin{cases}{ AB=AC }\ \\ { ∠BAF=∠CAE } \\{ AF=AE} \end{cases}$
$∴△BAF≌△CAE(SAS),∴BF=CE$
$∵點(diǎn)A和點(diǎn)D關(guān)于射線(xiàn)CP對(duì)稱(chēng),∴AE=DE\ $
$∴BD=BF+FE+ED=CE+2AE $