亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第22頁(yè)

第22頁(yè)

信息發(fā)布者:
75°
60°-α
60

(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)

(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)
$證明:∵DE⊥OB,∠DEF=60°,∴∠OEF=30°$
$∴∠OFE=180°-∠OEF-∠EOF=30°\ $
$∴∠OEF=∠OFE,∴OE=OF$
$又∵OC平分∠AOB,∴DO垂直平分EF\ $
$∴DE=DF,∴△DEF是等腰三角形$
$又∵∠DEF=60°,∴△DEF是等邊三角形 $
$證明:線(xiàn)段OD上截取OH=OE,連接EH\ $
$∵∠AOB=120°,OC平分∠AOB$
$∴∠EOD=∠FOD=60°\ $
$∵OE=OH,∴△OEH是等邊三角形\ $
$∴EH=OE=OH,∠EHO=60°=∠OEH=∠DEF\ $
$∴∠EHD=120°=∠EOF,∠DEH=∠FEO\ $
$在△DEH和△FEO中$
${{\begin{cases} {{∠DEH=∠FEO}} \\ {HE=OE} \\ {∠DHE=∠FOE} \end{cases}}}$
$∴△DEH≌△FEO(ASA) ,∴DH=OF$
$∴OD=DH+OH=OE+OF$
$解:結(jié)論:BD=CE+2AE,證明如下:$
$在EB上截取EF=EA,連接AF,如答圖②$
$由(2)知∠AEB=60°,∴△AEF是等邊三角形\ $
$∴AF=AE,∠FAE=60°$
$∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°\ $
$∴∠BAC-∠FAC=∠FAE-∠FAC,∴∠BAF=∠CAE\ $
$在△BAF和△CAE中$
$\begin{cases}{ AB=AC }\ \\ { ∠BAF=∠CAE } \\{ AF=AE} \end{cases}$
$∴△BAF≌△CAE(SAS),∴BF=CE$
$∵點(diǎn)A和點(diǎn)D關(guān)于射線(xiàn)CP對(duì)稱(chēng),∴AE=DE\ $
$∴BD=BF+FE+ED=CE+2AE $