$①解:∵AC=BC,∠ACB=90°\ $
$∴∠CAB=∠CBA=45°$
$∵AE平分∠BAC,∴∠CAE=\frac{1}{2}∠CAB=22.5°$
$∵BD⊥AD,∴∠ADB=90°\ $
$∵∠AEC=∠BED,∴∠EBD=∠CAE=22.5°$
$②證明:∵CF⊥CD,∴∠FCD=90°\ $
$∵∠ACB=90°,∴∠ACF+∠FCE=∠BCD+∠FCE\ $
$即∠ACF=∠BCD$
$由①得∠EBD=∠CAE=22.5°$
$在△ACF和△BCD中$
$\begin{cases}{ ∠ACF=∠BCD }\ \\ { CA=CB } \\{ ∠CAF=∠CBD} \end{cases}$
$∴△ACF≌△BCD(ASA),∴AF=BD $