$解:(1)B_{1}(-3,2)$ $(2)P(2,0)$
解:(2)∵∠ACD=90°,AC=CD,∴∠2=∠D=45° ∵AE=AC,∴∠4=∠6=67.5°, ∴∠DEC=180°-∠6=112.5°
$證明:(1)∵△ABC是等邊三角形,∴∠B=60°$ $∵DE//AB,∴∠B=∠EDC=60°$ $∵DE⊥EF,∴∠DEF=90°,∴∠F=90°-60°=30°$ $(2)(更多請點擊查看作業(yè)精靈詳解)$
$證明:∵∠BCE=∠ACD=90°\ $ $∴∠3+∠4=∠4+∠5,∴∠3=∠5$ $在△ABC和△DEC中$ $\begin{cases}{ ∠1=∠D }\ \\ { ∠3=∠5 } \\{ BC=EC} \end{cases}$ $∴△ABC≌△DEC,∴AC=CD $
$證明:∵△ABC是等邊三角形,∴∠B=∠ACB=60°\ $ $∵DE//AB,∴∠B=∠EDC=60°\ $ $∴∠EDC=∠ECD=∠DEC=60°$ $∴△DEC是等邊三角形,∴CE=CD\ $ $∵∠ECD=∠F+∠CEF,∠F=30°$ $∴∠CEF=∠F=30°,∴EC=CF,∴CD=CF $
|
|