$解:結(jié)論:PN=2BM,證明:$
$如答圖①,作PF//AC交BC于點(diǎn)F,$
$交BD于點(diǎn)E$
$∵BD⊥AC,PF//AC,∴PF⊥BD,∠BPE=∠A=45°$
$∴∠BEP=90°,∠BPE=∠PBE=45°,∴BE=PE\ $
$∵PM⊥BC,∴∠PMB=∠PEN=90°\ $
$∵∠BNM=∠PNE,∴∠NPE=∠EBF\ $
$在△PEN和△BEF中$
${{\begin{cases} {{∠NPE=∠FBE}} \\ {PE=BE} \\ {∠PEN=∠BEF} \end{cases}}} $
$∴△PEN≌△BEF(ASA),∴PN=BF\ $
$∵AB=AC,∴∠ABC=∠C$
$∵∠PFB=∠C,∴PB=PF\ $
$∵PM⊥BF,∴BM=MF,∴PN=2BM $