$解:如圖所示,連接OB,$
$\because \odot O與AB相切于點(diǎn)B,$
$\therefore OB\bot AB,$
$\because 四邊形OABC是平行四邊形,$
$\therefore AB//OC,OA// BC,$
$\therefore OB\bot OC,$
$\therefore \angle BOC={90}^{\circ },$
$\because OB=OC,$
$\therefore \triangle OCB為等腰直角三角形,$
$\therefore \angle C=\angle OBC={45}^{\circ },\because AO//BC, $
$\therefore \angle AOB=\angle OBC={45}^{\circ },$
$\therefore \angle E=\dfrac{1}{2}\angle AOB=22.{5}^{\circ }. $