$ $
$解:(1)\because A B 是 \odot O 的直徑, $
$ \therefore \angle A C B=90^{\circ} . $
$ \because \widehat{A C}=\widehat{B C}, $
$ \therefore \angle A=\angle A B C=45^{\circ} $
$ \because \angle A O D=130^{\circ}, $
$ \therefore \angle A C D=65^{\circ} . $
$ \because \angle B E C 是 \triangle A C E 的外角,$
$ \therefore \angle B E C=\angle A+\angle A C D=110^{\circ}$