亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第154頁

第154頁

信息發(fā)布者:
F
解:?$(2)$?由題意可知,這個(gè)長(zhǎng)方體的長(zhǎng)為?$x$?,寬為?$y$?,高為?$2$?
因此表面積為?$(xy+2x+2y)×2=2xy+4x+4y$?,體積為?$2xy$?
?$(3)$?由題意可知,?$B+D=C+E$?
∴?$E=B+D-C =(\frac {1}{2}a2b-3)-\frac {1}{2}(a2b-6)-(a^3-1)$?
?$=\frac {1}{2}a2b-3-\frac {1}{2}a2b+3-a^3+1 =1-a3$?
即?$E$?代表的代數(shù)式為?$1-a^3$?
解:?$(1)$?∵點(diǎn)?$P $?是點(diǎn)?$M$?關(guān)于點(diǎn)?$N$?的?$“$?半距點(diǎn)?$”$?
∴?$PN=\frac {1}{2}MN$?
①如圖①,∵?$MN=6\ \mathrm {cm}$?,點(diǎn)?$P_{1} $?是點(diǎn)?$M$?關(guān)于點(diǎn)?$N$?的?$“$?半距點(diǎn)?$”$?
∴?$P_{1}N=\frac {1}{2}MN=3(\mathrm {cm})$?
∴?$MP_{1}=MN-P_{1}N=3(\mathrm {cm})$?
②如圖②,∵?$MN=6\ \mathrm {cm}$?,點(diǎn)?$P_{2}$?是點(diǎn)?$M$?關(guān)于點(diǎn)?$N$?的?$“$?半距點(diǎn)?$”$?
∴?$P_{2}N=\frac {1}{2}MN=3(\mathrm {cm})$?
∴?$MP_{2}=MN+P_{2}N=9(\mathrm {cm})$?
 綜上,?$MP $?的長(zhǎng)為?$3\ \mathrm {cm} $?或?$9\ \mathrm {cm}$?
?$(2)①$?如圖?$①$?,?$G $?是線段?$MP_{1}$?的中點(diǎn)
∴?$MG_{1}=\frac {1}{2}MP_{1}=\frac {3}{2}(\mathrm {cm})$?
∴?$G_{1}N=MN-MG_{1}=6-\frac {3}{2}=\frac {9}{2}(\mathrm {cm})$?
 ②如圖②,?$G_{2}$?是線段?$MP_{2}$?的中點(diǎn)
∴?$MG_{2}=\frac {1}{2}MP_{2}=\frac {9}{2}(\mathrm {cm})$?
∴?$G_{2}N=MN-MG_{2}=6-\frac {9}{2}=\frac {3}{2}(\mathrm {cm})$?
綜上,線段?$GN$?的長(zhǎng)為?$\frac {9}{2}\mathrm {cm} $?或?$\frac {3}{2}\mathrm {cm}.$?