解:由題意可得:
當x=2時,y=2x+1=5
∴直線y=kx+b與直線y=2x+1的交點坐標為(2,5)
當y=-7時,-x+8=-7,則x=15
∴直線y=kx+b與直線y=-x+8的交點坐標為(15,-7)
把(2,5)和(15,-7)代入y=kx+b得:
$\left\{ \begin{array}{l}{2k+b=5} \\ {15k+b=-7} \end{array} \right.$
解得 $\left\{ \begin{array}{l}\displaystyle{k=-\frac{12}{13}} \\ \displaystyle{b=\frac{89}{13}} \end{array} \right.$
∴這個一次函數(shù)的函數(shù)表達式為y= $-\frac{12}{13}$x+ $\frac{89}{13}$