$(3)解:連接PP',交BC于點(diǎn)M,$
$過(guò)點(diǎn)P作x軸的垂線(xiàn)垂足為R,過(guò)點(diǎn)M作y軸的$
$垂線(xiàn)垂足為S,兩垂線(xiàn)相交于點(diǎn)N$
$設(shè)P(m,-\frac14m^2+\frac12m+2)$
$M(\frac {m}{2},-\frac {m}{4}+2)$
$∴MN=\frac {m}{2},PN=-\frac14m^2+\frac {3}{4}m$
$∵PP'⊥BC,∠BCO=∠MCS$
$∴∠NMP=∠BCO$
$又∵∠PNM=∠COB=90°$
$可得△PMN∽△BCO$
$∴\frac {MN}{OC}=\frac {PN}{OB}$
$∴m_1=0(舍),m_2=-1$
$∴P(-1,\frac {5}{4})$