$(3)解:∵直線CF為⊙O的切線$
$∴∠MCF=90°$
$又∵∠OMC=∠CMF$
$∴Rt△OMC∽R(shí)t△CMF$
$∴\frac {OM}{CM}=\frac {MC}{MF}$
$即\frac {3}{5}=\frac {5}{MF}$
$解得MF=\frac {25}{3}$
$∴OF=\frac {16}{3}$
$∴F(\frac {16}{3},0)$
$設(shè)CF函數(shù)表達(dá)式為y=mx+n$
$將點(diǎn)C(0,4)、F(\frac {16}{3},0)代入y=mx+n得$
$\begin{cases}{0=\frac {16}{3}m+n}\ \\ {4=n\ } \end{cases}$
$解得\begin{cases}{m=-\frac34}\ \\ {n=4\ } \end{cases}$
$又∵y=-\frac14x^2-\frac32x+4=-\frac14(x+3)^2+\frac {25}{4}$
$∴拋物線頂點(diǎn)P(-3,\frac {25}{4})$
$經(jīng)檢驗(yàn),點(diǎn)P(-3,\frac {25}{4})在直線CF:y=-\frac34x+4上,即直線CF經(jīng)過拋物線的頂點(diǎn)P$