$(2)解:如圖②中,過點(diǎn)P作GH//BC交AB于G,$
$交CD于H。則四邊形AGHD是矩形,設(shè)EG=x,則BG=4-x$
$∵∠A=∠EPD=90°,∠EGP=∠DHP=90°$
$∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°$
$∴∠EPG=∠PDH$
$∴△EGP∽△PHD$
$∴\frac {EG}{PH}=\frac {PG}{DH}=\frac {EP}{PD}=\frac {4}{12}=\frac13$
$∴PG=2EG=3x$
$DH=AG=4+x$
$在Rt△PHD中$
$∵PH^2+DH^2=PD^2$
$∴(3x)^2+(4+x)^2=12^2$
$解得x=\frac {16}{5}(負(fù)值已舍)$
$∴BG=4-\frac {16}{5}=\frac45$
$在Rt△EGP中$
$GP=\sqrt{EP^2-EG^2}=\frac {12}{5}$
$∵GH//BC$
$∴△EGP∽△EBF$
$∴\frac {EG}{EB}=\frac {GP}{BF}$
$∴\frac {\frac {16}{5}}{4}=\frac {\frac {12}{5}}{BF}$
$∴BF=3$