$(1)解:∵一次函數(shù)y=-\frac12x + 2的圖象交坐標(biāo)軸于點B、C$
$∴B(4,0),C(0,2)$
$∴S_{△AOC}=\frac12×2×1=1$
$∵S_{△QAB}=5S_{△AOC}∴S_{△QAB}=\frac12(4+1)×|y_Q|=5,則|y_Q|=2$
$設(shè)拋物線的解析式為y=ax^2+bx+c,將A、B、C代入得$
${{\begin{cases} {{a-b+c=0}} \\ {16a+4b+c=0} \\ {c=2} \end{cases}}}$
$解得{{\begin{cases} {{a=-\frac12}} \\ {b=\frac32} \\ {c=2} \end{cases}}} $
$∴二次函數(shù)解析式為y=-\frac12x^2+\frac32x+2$
$令y=2,則2=-\frac12x^2+\frac32x+2$
$解得x=0或3$
$令y=-2,則-2=-\frac12x^2+\frac32x+2$
$解得x=\frac {3±\sqrt{41}}{2}$
$∴Q點的坐標(biāo)為(0,2)或(3,2)或(\frac {3+\sqrt{41}}{2},-2)或(\frac {3-\sqrt{41}}{2},-2)$