$(2)解:∵AC=BC=4,∠ACB=90°$
$∴AB=\sqrt{2}BC=4\sqrt{2}$
$∵當(dāng)A、E、F三點(diǎn)在一直線上時(shí)$
$∵∠AFB=90°$
$∴AF=\sqrt{AB^2-BF^2}=\sqrt{32-4}=2\sqrt{7}$
$如圖1,當(dāng)AE在AB左上方時(shí)$
$AE=AF-EF=2\sqrt{7}-2,$
$∵AE=\sqrt{2}CD,$
$∴CD=\frac {\sqrt{2}}{2}AE= \sqrt{14}-\sqrt{2},$
$如圖2,當(dāng)AE在AB右下方時(shí)$
$同理,AE=AF+EF=2\sqrt{7}+2$
$∴CD=\sqrt{14}+\sqrt{2}$
$綜上所述,當(dāng)A、E、F三點(diǎn)在一直線上時(shí),$
$CD的長為\sqrt{14}-\sqrt{2}或\sqrt{14}+\sqrt{2}$