亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第95頁(yè)

第95頁(yè)

信息發(fā)布者:
$ AC=\frac {2\sqrt{3}}{3}DE$
$(2)解:在Rt△BAE,∠AEB=90°,∠EBA=30°,$
$AB=4$
$∴AE=AB×sin∠EBA=\frac12AB=2,∠BAE=60°$
$延長(zhǎng)DE交AB于點(diǎn)F,如圖所示$

$∴EF=AE×sin∠BAE=\frac {\sqrt{3}}{2}×2=\sqrt{3},AF=\frac12AE=1$
$∴BF=AB-AF=4-1=3,$
$由(1)可得AC=\frac {2\sqrt{3}}{3}DE$
$∴DE=\frac {\sqrt{3}}{2}AC=\sqrt{3},$
$∴DF=DE+EF=2\sqrt{3}$
$在Rt△BFD中,BD=\sqrt{BF^2+DF^2}$
$=\sqrt{3^2+(2\sqrt{3})^2}=\sqrt{21}$
$∵△ABC∽△EBD$
$∴\frac {BC}{BD}=\frac {AC}{DE}=\frac {2\sqrt{3}}{3}$
$∴BC=\frac {2\sqrt{3}}{3}×\sqrt{21}=2\sqrt{7}$
$即BC=2\sqrt{7}$
$(3)(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)$
$(1)解:∵A(\sqrt{3},0),B(0,1)$
$∴OA=\sqrt{3},OB=1$
$由折疊的性質(zhì)可得OA′=OA=\sqrt{3}$
$在Rt△A′OB中,A′B=\sqrt{OA′^2-OB^2}=\sqrt{2}$
$∴點(diǎn)A′的坐標(biāo)為(\sqrt{2},1)$
$(2)(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)$

$(2)解:在Rt△ABO中,OA=\sqrt{3},OB=1$
$∴AB=\sqrt{OA^2+OB^2}=2$
$∵P是AB的中點(diǎn)$
$∴AP=BP=1,OP=\frac12AB=1$
$∴OB=OP=BP$
$∴△BOP是等邊三角形$
$∴∠BOP=∠BPO=60°$
$∴∠OPA=180°﹣∠BPO=120°$
$由折疊的性質(zhì)得:∠OPA'=∠OPA=120°,PA'=PA=1$
$∴∠BOP+∠OPA'=180°$
$∴OB//PA'$
$又∵OB=PA'=1$
$∴四邊形OPA'B是平行四邊形$
$∴A'B=OP=1$
$(3)解:如圖所示,以AB為邊在AB上方作Rt△BAE,且∠EAB=90°,∠EBA=30°,連接BE,EA,ED,EC,$


$在Rt△BDC中,∠DBC=30°,$
$在Rt△BAE中,∠EAB=90°,∠EBA=30°,∴△ABE∽△CBD$
$∴∠ABE=∠CBE$
$∴∠ABC=∠EBD$
$\frac {DB}{EB}=\frac {BC}{BA}$
$∴△BDE∽△BCA$
$∴\frac {DE}{AC}=\frac {BD}{BC}=\frac {2\sqrt{3}}{3} $
$∵AC=2$
$∴DE=\frac {4\sqrt{3}}{3}$
$在Rt△AEB中,AB=4$
$AE=AB×tan∠EBA=4×\frac {\sqrt{3}}{3}=\frac {4\sqrt{3}}{3}$
$∴D在以E為圓心,\frac {4\sqrt{3}}{3}為半徑的圓上運(yùn)動(dòng)$
$∴當(dāng)點(diǎn)A,E,D三點(diǎn)共線時(shí),AD的值最大,此時(shí)$
$如圖所示,則AD=AE+DE=\frac {8\sqrt{3}}{3}$
$在Rt△ABD中$
$BD=\sqrt{AB^2+AD^2}=\sqrt{4^2+(\frac {8\sqrt{3}}{3})^2}=\frac {4\sqrt{21}}{3}$
$∴cos ∠BDA=\frac {AD}{BD}=\frac {\frac {8\sqrt{3}}{3}}{\frac {4\sqrt{21}}{3}}=\frac {2\sqrt{7}}{7}$
$sin∠BDA=\frac {AB}{BD}=\frac {4}{\frac {4\sqrt{21}}{3}}=\frac {\sqrt{21}}{7}$
$∵∠BEA=90°$
$∴∠BED=90°$
$∵△ABC∽△EBD$
$∴∠BDE=∠BCA$
$過點(diǎn)A做AF⊥BC于點(diǎn)F$

$∴CF=AC×cos∠ACB=2×\frac {2\sqrt{7}}{7}=\frac {4\sqrt{7}}{7}$
$AF=AC×sin∠ACB=\frac {2\sqrt{21}}{7}$
$∵∠DBC=30°$
$∴BC=\frac {\sqrt{3}}{2}BD=\frac {\sqrt{3}}{2}×\frac {4\sqrt{11}}{3}=2\sqrt{7}$
$∴BF=BC-CF=2\sqrt{7}-\frac {4\sqrt{7}}{7}=\frac {10\sqrt{7}}{7}$
$在Rt△AFB中,tan ∠CBA=\frac {AF}{BF}=\frac {\frac {2\sqrt{21}}{7}}{\frac {10\sqrt{7}}{7}}=\frac {\sqrt{3}}{5}$