$(3)解:∵AG=6,EG=2\sqrt{5},EG^2=\frac{1}{2}AF·GF$
$∴(2\sqrt{5})^2=\frac{1}{2}(6+GF)GF$
$∵GF>0$
$∴GF=4$
$∴AF=10$
$∵DF=EG=2\sqrt{5}$
$∴AD=BC=4\sqrt{5},DE=2EH$
$=\sqrt{{EG}^{2}-{(\frac{1}{2}GF)}^{2}}=8$
$∵∠CDE+∠DFA=90°,∠DAF+∠DFA=90°$
$∴∠CDE=∠DAF$
$∴Rt△ADF∽R(shí)t△DCE$
$∴\frac{EC}{DF}=\frac{DE}{AF},即\frac{EC}{2\sqrt{5}}=\frac{8}{10}$
$∴EC=\frac{8\sqrt{5}}{5}$
$∴BE=BC-EC=\frac{12\sqrt{5}}{5}$