$(3)解:∵AB=AC,AB=6$
$∴AC=6$
$∵∠ADE=∠ACB=30°且∠DAF=∠CAD$
$∴△ADF∽△ACD$
$∴\frac{AD}{AC}=\frac{AF}{AD}$
$∴AD^2=AF·AC$
$∴AD^2=6AF$
$∴AF=\frac{A{D}^{2}}{6}$
$∴當(dāng)AD最短時,AF最短、CF最長$
$當(dāng)AD⊥BC時,AF最短、CF最長$
$此時AD=\frac{1}{2}AB=3$
$∴AF最短=\frac{A{D}^{2}}{6}=\frac{{3}^{2}}{6}=\frac{3}{2}$
$∴CF最長=AC-AF最短=6-\frac{3}{2}=\frac{9}{2}$