$(2)解:點(diǎn)B的橫坐標(biāo)大于點(diǎn)D的橫坐標(biāo),點(diǎn)B在$
$點(diǎn)D的右側(cè).過(guò)點(diǎn)C作直線EF⊥x軸于F,交AB于E$
$由平移的性質(zhì)得AB//x軸$
$AB=m,∠B=∠CDF,點(diǎn)C為BD的中點(diǎn)$
$BC = DC$
$在△ECB和△FCD中$
${{\begin{cases} {∠B=∠CDF } \\ {BC =DC} \\ {∠BCE=∠DCF } \end{cases}}}$
$∴△ECB≌△FCD(ASA)$
$BE=DF,CE=CF$
$∵AB//x軸,點(diǎn)A的坐標(biāo)為(4,8)$
$∴EF=8,CE=CF=4,點(diǎn)C的縱坐標(biāo)為4.$
$由(1)知:反比例函數(shù)的解析式為:y=\frac {32}{x}$
$∴當(dāng)y=4時(shí),x=8$
$點(diǎn)C的坐標(biāo)為(8,4),點(diǎn)E的坐標(biāo)為(8,8),點(diǎn)F的坐$
$標(biāo)為(8,0)$
$∵點(diǎn)A(4,8),AB=m,AB//x軸$
$∴點(diǎn)B的坐標(biāo)為(m +4,8)$
$BE=m+4-8=m-4$
$DF=BE=m-4$
$OD=8-(m-4)=12-m$
$AB·OD=m(12-m)=-(m-6)^2+36$
$∴當(dāng)m =6時(shí),AB·OD取得最大值,最大值為36$