$(2)解:將x=0代入y=-\frac43x+4b$
$解得y=4b,點(diǎn)B坐標(biāo)(0,4b)$
$將y=0代入y=-\frac43x+4b$
$解得x=3b,點(diǎn)A坐標(biāo)(3b,0)$
$設(shè)AM與BC交于點(diǎn)N$
$∵△ABM沿直線AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)C處 $
$∴AM是∠BAC的角平分線$
$又∵AB=AC$
$∴N為BC中點(diǎn)$
$AC=AB=\sqrt{(3b)^2+(4b)^2}=5b$
$點(diǎn)C橫坐標(biāo)為3b-5b=-2b,點(diǎn)C坐標(biāo)(-2b,0)$
$∵N為BC中點(diǎn)$
$∴N點(diǎn)坐標(biāo)(-b,2b)$
$設(shè)AM解析式為y=kx+c$
$將A(3b,0)N(-b,2b)代入y=kx+c得$
$\begin{cases}{ 0=3bk+c }\ \\ {2b=-bk+c\ } \end{cases}$
$解得\begin{cases}{ k=-\frac12 }\ \\ { c=\frac32b } \end{cases}y=-\frac12x+\frac32b$
$將x=0代入y=-\frac12x+\frac32b$
$解得y=\frac32b,點(diǎn)M坐標(biāo)(0,\frac32b)$
$設(shè)CM解析式為y=dx+e,將C(-2b,0)M(0,\frac32b)代入y=dx+e$
$\begin{cases}{ 0=-2bd+e }\ \\ {\frac32b=e\ } \end{cases}$
$解得\begin{cases}{ d=\frac34 }\ \\ { e=\frac32b } \end{cases}$
$CM解析式為y=\frac34x+\frac32b$
$將點(diǎn)P(2,1)代入y=\frac34x+\frac32b$
$解得b=-\frac13<0,所以不可以$