亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第170頁

第170頁

信息發(fā)布者:

270
135
$α+nβ=360°$
$解:(1)如圖,過點C作CK//EF$
$∵EF//MN,∴∠FDB+∠DBN=180°$
$∵∠FDB=120°,∴∠DBN=60°$
$∵BD平分∠CBN,∴∠CBN=120°$
$∴∠MBC=180°-120°=60°.$
$∵EF∥CK,EF//MN,∴CK//MN$
$∴∠KCB=∠CBM=60°$
$∵∠ACB=90°,∴∠ACK=30°$
$∴∠EAC=∠ACK=30°.$
$(更多請點擊查看作業(yè)精靈詳解)$

(更多請點擊查看作業(yè)
精靈詳解)
$解:(3)\frac{360°-∠C}{∠EP_{2023}G} =2^{2023}$
$解:∠GHB為定值. 理由:$
$設∠AGH=∠HGB=x,∠CBH=∠HBN=y$
$則有\(zhòng)begin{cases}{2y=2x+100°}\\{y=x+∠GHB}\end{cases}$
$可得∠GHB=\frac{1}{2}×100°=50°$
$解:①∵l_2//l_1,∠ECG=α$
$由(1)①知∠CED+∠CGF+∠ECG=360°$
$∴∠CED+∠CGF=360°-∠ECG=360°-α$
$由條件知∠DEP=\frac{1}{3}∠CED,∠FGP=\frac{1}{3}∠CGF$
$∴\frac{2}{3}∠CED=∠CEP,\frac{2}{3}∠CGF=∠CGP$
$∴∠CEP+∠CGP$
$=\frac{2}{3}∠CED+\frac{2}{3}∠CGF$
$=\frac{2}{3}(∠CED+∠CGF)$
$=\frac{2}{3}(360°-α)$
$∵∠CEP+∠CGP+∠EPG+∠ECG=360°$
$∴\frac{2}{3}(360°-α)+β+α=360°$
$整理得α+3β=360°$
$②α+nβ=360°$