$解:如圖②,過點B作BG//DM$
$∵BF平分∠DBC,BE平分∠ABD$
$∴∠DBF=∠CBF,∠DBE=∠ABE$
$由(2)可得∠ABD=∠CBG$
$∴∠ABF=∠GBF$
$設∠DBE=α,∠ABF=β$
$則∠ABE=α,∠ABD=2α=∠CBG,$
$∠GBF=β=∠AFB,∠BFC=3∠DBE=3α$
$∴∠AFC=3α+β$
$∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°$
$∴∠FCB=∠AFC=3α+β$
$在△BCF中,由∠CBF+∠BFC+∠BCF=180°$
$可得(2α+β)+3α+(3α+β)=180°,①$
$由AB⊥BC,可得β+β+2α=90°,②$
$由①②聯(lián)立方程組,解得α=15°$
$∴∠ABE=15°$
$ \begin{aligned} ∴∠EBC&=∠ABE+∠ABC \\ &=15°+90° \\ &=105°. \\ \end{aligned}$