$解:(1)①當(dāng)x<-3時(shí),原不等式變形為$
$\begin{cases}{x\lt -3}\\{-(x+3)\gt 5+x}\end{cases}$
$解不等式組,得 x<-4$
$②當(dāng)x≥-3時(shí),原不等式變形為\begin{cases}{x≥-3}\\{x+3\gt 5+x}\end{cases}$
$該不等式組無解$
$綜合①②可得,原不等式的解集為x<-4.$
$(2)①當(dāng)x≥3時(shí),原不等式變形為\begin{cases}{x≥3}\\{x+x-3\lt 5}\end{cases}$
$解不等式組,得3≤x<4$
$②當(dāng)x<0時(shí),原不等式變形為\begin{cases}{x\lt 0}\\{-x-x+3\lt 5}\end{cases}$
$解不等式組,得-1< x<0$
$③當(dāng)0≤x<3時(shí),原不等式變形為\begin{cases}{0≤x\lt 3}\\{x+3-x\lt 5}\end{cases}$
$解不等式組,得0≤x<3$
$綜合①②③可得,原不等式的解集為-1<x<4.$