$\begin{cases}{x:y=3:4,①}\\{y:z=4:5,②}\\{x+y+z=36,③}\end{cases}$
$解法1:由①,得4x=3y,x=\frac{3}{4}y,④$
$由②,得4z=5y,z=\frac{5}{4}y,⑤$
$把④和⑤代入③$
$得\frac{3}{4}y+y+\frac{5}{4}y=36$
$解得y=12$
$所以x=\frac{3}{4}×12=9,z=\frac{5}{4} ×12=15$
$所以原方程組的解為\begin{cases}{x=9}\\{y=12}\\{z=15}\end{cases}$
$解法2:由①和②,得x:y:z=3:4:5$
$設(shè)x=3k,y=4k,z=5k,并代入③$
$得3k+4k+5k=36,解得k=3$
$所以x=9,y=12,z=15$
$所以原方程的解為\begin{cases}{x=9}\\{y=12}\\{z=15}\end{cases}$