$解:(1)當(dāng)n=4時(shí),有(2,3,3)$
$當(dāng)n=5時(shí),有(2,4,4),(3,3,4)$
$當(dāng)n=6時(shí),有(2,5,5),(3,4,5),(4,4,4).$
$(2)當(dāng)n=12時(shí),a+b+c=24$
$且a+b>c,a≤b≤c$
$由此得8≤c≤11,即c=8,9,10,11$
$故可得(a,b,c)共有12組,分別為(2,11,11),$
$(3,10,11),(4,9,11),(5,8,11),(6,7,11),$
$(4,10,10),(5,9,10),(6,8,10),(7,7,10),(6,9,9),$
$(7,8,9),(8,8,8).$