$解:(3)連接AD$
$∵△ACE與△DOE的面積相等$
$∴△AOC與△DOC的面積相等$
$∴AD//OC$
$設(shè)AD所在直線的表達式為y=kx+b$
$把A(0,6),D(-4,0)分別代入$
$得\begin{cases}b=6\\-4k+b=0\end{cases},解得\begin{cases}k=\frac 32\\b=6\end{cases}$
$∴直線AD的表達式為y=\frac{3}{2}x+6$
$∴直線OC的表達式為y=\frac{3}{2}x$
$解方程組\begin{cases}y=-\frac 34x+6\\y=\frac 32x\end{cases},得\begin{cases}x=\frac 83\\y=4\end{cases}$
$∴C(\frac{8}{3},4)$
$設(shè)P(t, -\frac{3}{4}t+6)$
$當(dāng)點P在點C下方時,$
$S_{△PCD}=S_{△BCD}-S_{△PBD}$
$∵△DOC與△DPC的面積相等$
$∴\frac{1}{2}×12×4-\frac{1}{2}×12×(-\frac 34t+6)=8$
$解得t=\frac{40}{9}$
$此時點P 坐標(biāo)為(\frac{40}{9},\frac{8}{3})$
$當(dāng)點P 在點C上方時,$
$S_{△PCD}=S_{△PBD}-S_{△CBD}$
$∵△DOC與△DPC的面積相等$
$∴\frac{1}{2}×12×(-\frac 34t+6)-\frac{1}{2}×12×4=8$
$解得t=\frac{8}{9}$
$此時點P 坐標(biāo)為(\frac{8}{9},\frac{16}{3})$
$綜上所述,點P 坐標(biāo)為(\frac{40}{9},\frac{8}{3})或(\frac{8}{9},\frac{16}{3})$