$證明:?(2) ?延長(zhǎng)? C E ?與? BA ?的延長(zhǎng)線交于點(diǎn)? F?$
$∵?\angle A B C= 45°,??A B=A C,?∴?\angle BA C=90°?$
$∵C?E \perp B D,?∴?\angle BA C=\angle D E C ?$
$∵?\angle A D B=\angle C D E,?∴?\angle A B D=\angle D C E?$
$在? \triangle BA D ?和? \triangle CA F ?中$
$?\begin{cases}{\angle BA D=\angle CA F}\\{A B=A C}\\{ \angle A B D=\angle A C F}\end{cases}?$
$∴?\triangle BA D ≌ \triangle CA F(\mathrm {ASA}),?∴?B D=C F?$
$∵?B D ?平分? \angle A B C,??C E \perp D B,?∴?\angle F B E=\angle C B E ?$
$在? \triangle B E F ?和? \triangle B E C ?中$
$? \begin{cases}{\angle F B E=\angle C B E}\\{B E=B E}\\{\angle B E F=\angle B E C}\end{cases}?$
$∴?\triangle B E F ≌\(chéng)triangle B E C(\mathrm {ASA})?$
$∴?C E=E F,?∴?B D=2CE ?$
$? (3)\ \mathrm {S}_{\triangle A C E}=\frac {1}{8}m?$