$解:(2)上題中的結(jié)論依然成立,理由:$
$延長?FD?到點?G,?使?DG= BE,?連接?AG?$
$∵?∠ADF=110°,??∠B=70°?$
$∴?∠ADG=180°-110°=70°= ∠B?$
$在?△ABE ?和? △ADG ?中$
$?\begin{cases}{BE=DG}\\{∠B=∠ADG}\\{AB=AD}\end{cases}?$
$∴?△ABE≌△ADG(\mathrm {SAS})?$
$∴?AE=AG,??∠BAE=∠DAG?$
$∵?∠BAD=100°,??∠EAF=50°?$
$∴?∠BAD=2∠EAF?$
$∴?∠GAF= ∠DAG+∠DAF= ∠BAE+∠DAF$
$= ∠BAD - ∠EAF = ∠EAF?$
$\ 在? △AEF ?和? △AGF ?中$
$\begin{cases}AE=AG\\∠EAF=∠GAF\\AF=AF\end{cases}$
$∴△AEF≌△AGF(\mathrm {SAS})$
$∴?EF=GF?$
$∵?GF=DG+DF=BE+DF?$
$∴?EF=BE+DF?$