證明:?$(1)∵D$?是?$\widehat{AC}$?的中點
?$∴\widehat{AD}=\widehat{CD}$?
?$∵AB⊥DH$?且?$AB$?是?$⊙O$?的直徑
?$∴\widehat{AD}=\widehat{AH}$?
?$∴\widehat{CD}=\widehat{AH}$?
?$∴∠ADH=∠CAD$?
?$∴AF=DF$?
?$(2)$?設?$AE=\sqrt{5}x,$?則?$AD=5x$?
?$∵ DE⊥AB,$?
?$∴∠AED=90°,$?
∴在?$Rt△AED$?中,?$DE= \sqrt{AD2-AE2}=2\sqrt{5}x.$?
?$∵AF=\frac {5}{2},$??$AF=DF,$?
?$∴ DF=\frac {5}{2}.$?
∵在?$Rt△AEF $?中,?$AE2+EF2=AF2,$?
?$∴(\sqrt{5}x)2+(2\sqrt{5}x-\frac {5}{2})2=(\frac {5}{2})2,$?
解得?$x=\frac {2\sqrt{5}}{5}(x=0$?舍去),
?$∴AE=\sqrt{5}x=2$?