證明:?$(1)$?連接?$OC. $?
?$∵\widehat{BC}=\widehat{BD},$?
?$∴ ∠BOD=∠BOC.$?
?$∵ OA=OC,$?
?$∴ ∠OCA=∠A,$?
?$∴ ∠BOC=∠OCA+∠A=2∠A. $?
?$∵ ∠BOD=2∠F,$?
?$∴ ∠A=∠F. $?
?$∵ △AEG、$??$△FBG$?的內角和均為?$180°,$??$∠AGE=∠BGF,$?
?$∴∠AEG=∠GBF.$?
?$∵DE⊥AC,$?
?$∴ ∠AEG=90°,$?
?$∴ ∠GBF=90°,$?
?$∴ OB⊥BF.$?
?$∵ OB$?為?$⊙O$?的半徑,
?$∴ BF$?是?$⊙O$?的切線.
?$(2)△DGB$?為等腰三角形,理由:
?$∵ AB$?是?$⊙O$?的直徑,?$\widehat{BC}=\widehat{BD},$?
?$∴\widehat{AC}=\widehat{AD},$?
?$∴ ∠OBD=∠OBC. $?
?$∵ AB$?是?$⊙O$?的直徑,
?$∴ ∠ACB=90°$?
由?$(1),$?得?$∠AEG=90°,$?
?$∴ ∠ACB=∠AEG,$?
?$∴ EF//BC,$?
?$∴ ∠DGB=∠OBC,$?
?$∴ ∠DGB=∠OBD,$?
?$∴ DB=DG,$?
?$∴ △DBG$?為等腰三角形
?$(3)$?由?$(1),$?得?$∠GBF=90°,$?
由?$(2),$?得?$∠DGB =∠OBD,$?
?$∴∠DGB +∠F = 90°,$??$ ∠OBD+∠FBD=90°,$?
?$∴∠F=∠FBD,$?
?$∴ BD=DF.$?
由?$(2),$?得?$BD=DG.$?
?$∵BD=2,$?
?$∴ FG=DF+DG=2BD=4$?