解:?$(1)∵∠COB=90°,$??$∠CBO=45°,$??$B(3,$??$0),$?
?$∴∠OCB=45°=∠CBO,$?
?$∴OC=OB=3,$?
?$∵CD∥OA,$??$∠D=90°,$??$∠COA=90°,$?
?$∴∠DCO=90°,$??$∠DAO=90°,$?
∴四邊形?$COAD$?是矩形,
?$∵A(5,$??$0),$?
?$∴CD=OA=5,$??$OC=AD=3,$?
∴點?$D$?的坐標(biāo)為?$(5,$??$3),$?
∴點?$C$?的坐標(biāo)為?$(0,$??$3).$?
?$(2)$?如圖,當(dāng)?$P$?在?$B$?的左側(cè),
?$∵∠BCP=15°,$??$∠OCB=45°,$?
?$∴∠PCO=30°,$?
?$OP=OC×tan_{30}°=3×\frac {\sqrt{3}}{3}=\sqrt{3},$?
?$∵Q(-4,$??$0),$?
?$∴QP=4+\sqrt{3},$?
即?$t=(4+\sqrt{3})÷2=\frac {4+\sqrt{3}}{2};$?
②如圖,當(dāng)?$P$?在?$B$?的右側(cè),
?$∵∠BCP=15°,$??$∠OCB=45°,$?
?$∴∠OCP=60°,$?
則?$∠CPO=30°,$?
?$∴OP=\sqrt{3}OC=3\sqrt{3},$?
?$∴QP=4+3\sqrt{3},$?
?$t=(4+3\sqrt{3})÷2=\frac {4+3\sqrt{3}}{2}.$?
綜上可知,當(dāng)?$∠BCP=15°$?時,?$t$?的值為?$\frac {4+\sqrt{3}}{2}$?或?$\frac {4+3\sqrt{3}}{2}.$?