證明:?$(1)$?連接?$BC. $?
?$∵ AB$?是?$⊙O$?的直徑,
?$∴ ∠ACB=90°.$?
?$∵ ∠PBC=∠BAC+∠ACB,$?
?$∴ ∠PBC-∠BAC=90°. $?
∵ 四邊形?$ABCD$?為?$⊙O$?的內(nèi)接四邊形,
?$∴ ∠ADC+∠ABC=180°.$?
?$∵ ∠PBC+∠ABC=180°,$?
?$∴ ∠ADC=∠PBC,$?
?$∴ ∠ADC-∠BAC=90°$?
?$(2)$?連接?$OC,$?
?$∵ ∠ACP=∠ADC,$??$∠ADC-∠BAC=90°,$?
?$∴ ∠ACP - ∠BAC = 90°$?
?$∵ OA =OC,$?
?$∴∠BAC=∠ACO,$?
?$∴ ∠ACP-∠ACO=90°,$?
即?$∠OCP=90°,$?
∴在?$Rt△OCP $?中,?$CC2+CP2=OP2.$?
?$∵ ⊙O$?的半徑為?$3,$??$CP=4,$?
?$∴OP= \sqrt{32+42}=5,OA=3,$?
?$∴AP=OP+OA=8$?