亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

第7頁

信息發(fā)布者:


證明:?$(1)$?連接?$BC. $?
?$∵ AB$?是?$⊙O$?的直徑, 
?$∴ ∠ACB=90°.$?
?$∵ ∠PBC=∠BAC+∠ACB,$?
?$∴ ∠PBC-∠BAC=90°. $?
∵ 四邊形?$ABCD$?為?$⊙O$?的內(nèi)接四邊形, 
?$∴ ∠ADC+∠ABC=180°.$?
?$∵ ∠PBC+∠ABC=180°,$?
?$∴ ∠ADC=∠PBC,$?
?$∴ ∠ADC-∠BAC=90°$?
?$(2)$?連接?$OC,$?
?$∵ ∠ACP=∠ADC,$??$∠ADC-∠BAC=90°,$?
?$∴ ∠ACP - ∠BAC = 90°$?
?$∵ OA =OC,$?
?$∴∠BAC=∠ACO,$?
?$∴ ∠ACP-∠ACO=90°,$?
即?$∠OCP=90°,$?
∴在?$Rt△OCP $?中,?$CC2+CP2=OP2.$?
?$∵ ⊙O$?的半徑為?$3,$??$CP=4,$?
?$∴OP= \sqrt{32+42}=5,OA=3,$?
?$∴AP=OP+OA=8$?
證明?$:(1)$


?
?$(2)∵AB=AC,$?
?$∴∠ABC=∠ACB.$?
?$∵AB//CE,$?
?$∴∠ABC=∠BCF,∠BFC+∠ABF=180°,$?
?$∴∠BCF=∠ACB.$?
?$∵ AB$?為?$⊙O$?的直徑,
?$∴∠ADB=90°. $?
?$∵ ∠ADB+∠BDC=180°,$?
?$∴∠BDC=90°$?
?$∵BF$?為?$⊙O$?的切線,
?$∴∠ABF=90°,$?
?$∴∠BFC=90°,$?
?$∴ ∠BDC=∠BFC.$?
在?$△BCD$?和?$△BCF$?
?$\begin{cases}{∠BDC=∠BFC,}\\{∠DCB=∠FCB,}\\{BC=BC,}\end{cases}$?
?$∴△BCD≌△BCF,$?
?$∴ BD=BF$
?